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A B S T R A C T

The original Spectral Correlation Index (SCIo) is a measure of amplitude envelope
distortion that has been used in several studies to predict behavioral results.
Because the original SCIo did not account for the differential contribution of par-
ticular frequency bands to speech intelligibility (i.e., band importance) or for audi-
bility, a new “individual” version (the SCIi) is proposed and evaluated. Sentence
intelligibility data are used to compare the predictive power and goodness-of-fit
for statistical models using two versions of the SCI. The SCIi provides signifi-
cantly better fits to behavioral data than the SCIo. This result demonstrates the
importance of accounting for and including signal audibility in analyzing and
modeling data collected from the population of individuals with hearing impair-
ment. With this update, the SCIi is a useful measure for predicting speech intel-
ligibility based on amplitude envelope distortions.
The original Spectral Correlation Index (SCIo) is a
measure of amplitude envelope distortion that was pro-
posed as a straightforward quantification of differences in
amplitude modulation (AM) properties between a baseline
and a comparison signal (Gallun & Souza, 2008). The
SCIo is obtained by calculating the modulation index
within octave-wide bands centered on the audiometric fre-
quencies (250, 500, 1000, 2000, 4000, and 8000 Hz). These
are calculated for two signals: a baseline signal (typically
an unprocessed speech signal in quiet) and a comparison
signal (a signal that has undergone some amount of
acoustic change: hearing aid compression, been subjected
to background noise, frequency lowering, etc.). The modu-
lation indices within octave bands for each signal are then
vectorized and correlated with one another using a simple
Pearson correlation. This results in a single measure that
ranges from −1 to 1, but negative values tend to be rare. An
SCIo value of 1 represents a comparison signal whose AM
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properties are identical to the baseline. An SCIo value of 0
represents a signal whose AM properties are uncorrelated
with those of a baseline signal. Finally, an SCIo value of −1
represents a signal whose AM properties vary inversely to
the baseline.

A major advantage of the SCIo is that it is capable
of quantifying differences between two signals of different
lengths. Other measures (like the Envelope Distortion
Index and Hearing Aid Speech Perception Index and
Hearing Aid Speech Quality Index) are limited in that
they require the baseline and comparison signals to be of
equal length. Because such measures require equal-length
signals, it is impossible to quantify distortion due to pro-
cessing strategies that change length of a signal (like time
compression [TC]). The SCIo does not have this limitation
and, therefore, is worth iterating and improving upon.

The SCIo has been shown to predict vowel–consonant–
vowel (VCV) token perception; specifically, higher SCIo
values—indicating that modulation properties are preserved—
are associated with fewer errors in VCV perception (Gallun &
Souza, 2008; Souza et al., 2021; Souza & Gallun, 2010). How-
ever, the SCIo as originally proposed is a somewhat generic
measure. It does not account for the fact that certain carrier
bands contribute more to speech understanding than others.
July 2022 • Copyright © 2022 American Speech-Language-Hearing Association
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Such a band importance function is a key part of calculat-
ing both the Speech Transmission Index (Steeneken &
Houtgast, 1980) and the Speech Intelligibility Index (SII;
American National Standards Institute [ANSI], 1997), mea-
sures that provide accurate predictions of speech intelligibil-
ity. In addition, the SCIo does not take into account band
audibility relative to the listener’s hearing thresholds. This
research note proposes to combine the band importance
function of the SII, audibility, and the distortion sensitivity
of the SCIo to improve the overall predictive power of the
SCIo and update it for predicting sentence materials rather
than VCVs. An updated version of the SCIo, the “individ-
ual SCI” (SCIi), is proposed and compared against the orig-
inal. This research note reanalyzes behavioral data that
were published previously (Souza et al., 2021). The lis-
teners, procedure, and stimuli are identical to that paper
and reported here again for ease of reading and clarity. The
goal of this paper is to quantify and discuss the differences
in predictive power between the SCIo and the SCIi.
Method

Listeners

The listener data reported here were drawn from
Souza et al. (2021). In that data set, 25 adults (14 women)
with ages ranging from 63 to 89 years (Mage = 74 years)
and bilateral sensorineural hearing loss participated. The
better ear of each participant was chosen as the test ear.
All participants passed the Montreal Cognitive Assess-
ment (Nasreddine et al., 2005) with a score of at least 23
out of a possible 30 points (Shen et al., 2016). All listeners
spoke American English as their primary language, com-
pleted an informed consent process, and were compen-
sated for their time. All experimental methods were
approved by the Northwestern University Institutional
Review Board.

Stimuli

The speech signals were the same as those used in
Souza et al. (2021). Test stimuli were Institute of Electrical
and Electronics Engineers sentences (Rothauser, 1969).
Two male and two female talkers were used. Talker selec-
tion and recording details are described in Panfili et al.
(2017). Following from the experimental question for
Souza et al. (2021) the sentences were time compressed,
mixed with six-talker babble from the connected speech
test (Cox et al., 1987) at 10 dB signal-to-noise ratio
(SNR), and then passed through a hearing aid simulator.

TC was applied using Pitch Synchronous Overlap
and Add (Moulines & Charpentier, 1990). This manipula-
tion was performed in Praat (Boersma & Weenink, 2018)
Downloaded from: https://pubs.asha.org Northwestern University on 09/04/2
for three different TC rates. Sentences were compressed to
100% (no TC), 70%, and 50% of their original length. Pilot
testing demonstrated these rates to produce behavioral
results with no floor or ceiling effects.

Hearing aid processing was achieved using a hearing
aid simulator (Kates, 2017) with a 16-channel filterbank.
The center frequencies of the filterbank were 0.1, 0.2, 0.3,
0.4, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 2, 2.5, 3, 4, 5, and 6 kHz.
The first and last filters were low- and high-pass, respec-
tively. All other filters were bandpass. Four wide dynamic
range compression (WDRC) conditions were imple-
mented: linear (1:1 compression ratio, 100 ms attack time,
1400 ms release time), slow (2:1 compression ratio, 100 ms
attack time, 1400 ms release time), fast (2:1 compression
ratio, 5 ms attack time, 100 ms release time), and hyper
(4:1 compression ratio, 2 ms attack time, and 40 ms
release time). After WDRC processing, gain was applied
for each listener following the revised National Acoustics
Laboratory gain rule (Byrne & Dillon, 1986). For more
details on signal processing, please see Souza et al. (2021).

Procedure

The procedure for behavioral data is as reported in
Souza et al. (2021). Testing was conducted in a double-
walled sound-treated booth. Stimuli were converted from
digital to analog using a TDT RX6 DAC, attenuated
using a TDT PA5, and passed into a TDT HB7 head-
phone buffer. Signals were presented to listeners via an
ER-3 insert headphone.

Sentences were blocked by TC condition. Uncom-
pressed signals were presented first, followed by sentences
that were 70% of the original length, then ending with
sentences that were 50% of the original length. Each list
contained 100 unique sentences. Sentence, talker, and
WDRC condition were randomized within blocks. After
listening to each sentence, the listener verbally repeated
the sentence. The number of correct keywords out of a
possible 5 was recorded by an experimenter located out-
side of the sound-treated booth. No feedback was pro-
vided. Listeners received a break after each block.

Calculating the SCI

The SCIo is described in Gallun and Souza (2008).
The steps of the SCIi are detailed below and in Figure 1.
All processing was done in MATLAB (The Math Works,
2021). Two signals are required to calculate any version of
the SCI: a baseline signal (typically not processed by a
hearing aid, or minimally processed) and a comparison
signal. The sampling frequencies of the signals presented
here were 44.1 kHz.

All processing steps are done for both the baseline
and comparison signals. First, a signal is passed through a
Ellis & Souza: Updating the Spectral Correlation Index 2721
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Figure 1. The first four steps in the Spectral Correlation Index (SCI) processing chain. A) Sample waveform taken from the Institute of
Electrical and Electronics Engineers corpus. B) The signal is passed through a filterbank. Each filter is one octave wide with center frequen-
cies equal to audiometric frequencies (octave frequencies between 250 and 8000 Hz). C) The output of the filters in B are low-pass filtered at
50 Hz. D) Fast Fourier Transform is performed on the resultant envelopes from C. The energy is binned in octave wide amplitude modulation
(AM) frequencies between 1 and 32 Hz. The power in each bin is divided by the DC component (0 Hz). This provides the modulation index for
a particular AM frequency within a particular carrier frequency.
bank of bandpass filters with center frequencies at 250,
500, 1000, 2000, 4000, and 8000 Hz. Next, the envelopes
within each band are extracted. Envelope extraction is
accomplished by half wave rectifying the outputs of the fil-
ters (setting all negative values to 0). The rectified signals
are then processed with a finite impulse response low-pass
filter (passband: 50 Hz; stopband: 250 Hz; stopband attenu-
ation 60 dB). Then, the AM properties of each envelope
are analyzed using Fourier analysis. In the SCIo (Gallun &
Souza, 2008), the signals were analyzed with a frequency
resolution of 0.2 Hz. To keep the same frequency resolu-
tion, envelopes are resampled to a rate that would ensure
an AM resolution of 0.2 Hz. The frequency resolution of a
fast Fourier Transform (FFT) is defined as:

fR ¼ fS
N

(1)

where fR is the frequency resolution, fS is the sampling fre-
quency, and N is the number of points in the FFT. We
can, therefore, determine the necessary fS to attain a fre-
quency resolution of 0.2 Hz as long as the length of the
signal (N) is known. Given this, fS is determined by taking
the product of the length of the signal (N) and 0.2 Hz
(e.g., a signal with 1000 points would be resampled to an
fS of 200 Hz). In the case that the resulting fS is not possi-
ble due to limitations in MATLAB (i.e., the product of
the new and old sample rates is greater than 231), the max-
imum fs that does not exceed the limitation in MATLAB
is used instead.
2722 Journal of Speech, Language, and Hearing Research • Vol. 65 •
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In order to analyze the AM properties of each band,
the output of the FFT is then subjected to a binning pro-
cedure. In the simplest terms, the output of the FFT is
processed by a bank of perfectly rectangular filters with
octave-wide passbands centered on 1, 2, 4, 8, 16, and 32
Hz. In practice, this is done by summing the energy that
fell within the passbands of these rectangular filters. The
output of these rectangular filters is divided by the energy
of the DC component (0 Hz). Dividing by the energy
present in the DC component provides a normalized
“modulation index” value that indicates the relative
amount of modulation within each AM filter and within
each frequency band.

The result of this process is a 6 × 6 modulation
index matrix (MIM) that contains the relative amount of
modulation in each carrier frequency band (rows) and at
each of the AM frequencies (columns). For the original
SCI, the matrix was as described above. For the proposed
new version, the MIM is subjected to a weighting proce-
dure. The weighting procedure is based on an individual’s
hearing loss and the gain they receive at each frequency
and is, therefore, named the “individual” SCI (SCIi). The
SCIi provides a measure of distortion that is dependent on
the listener’s individual hearing abilities. Two components
of the SII play a prominent role in calculating the SCIi:
the band audibility function (A) and the band importance
function (I).

A mathematically describes the audibility of speech
sounds within the bands centered on 250, 500, 1000, 2000,
4000, and 8000 Hz. A is calculated by solving several
2720–2726 • July 2022
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equations in sequence. These steps are detailed in the SII
ANSI standard (ANSI, 1997) but are reproduced here for
convenience and clarity. The first step in calculating A is
the summation of an individual’s thresholds with internal
noise spectrum level to produce the equivalent internal
noise spectrum level. This is done by summating the vec-
tor of internal noise spectrum (−3.9, −9.7, −12.5, −17.7,
−25.9, −7.1) with an individual’s effective hearing thresh-
olds. The effective hearing thresholds are acquired by tak-
ing the difference between a listener’s thresholds in dB HL
and the gain applied by the hearing aid simulator, so these
values differ from individual to individual. Next, the dis-
turbance spectrum level (D) is calculated as the maximum
between the SNR within a given band and the equivalent
internal noise spectrum level. Then, the level distortion
factor (L) is calculated, but for the stimuli examined here
(in the terms of the SII standard, a “raised” vocal effort
with 68.34 dB SPL) was always a vector containing only
1’s. The next calculation is shown below:

K ¼ E �Dþ 15ð Þ=30 (2)

where E is the equivalent speech spectrum level (here,
38.98, 40.15, 33.86, 25.32, 16.78, and 5.07 dB for each
octave band) and D is the disturbance spectrum level cal-
culated above. K is restricted to fall between 0 and 1, so
values below 0 or above 1 are replaced with 0 or 1,
respectively. K is then multiplied with L to produce A.

I mathematically describes the importance of those
bands for understanding speech. The six-frequency I from
the SII is defined as 0.06, 0.17, 0.23, 0.26, 0.21, and 0.05
for octave bands centered 250, 500, 1000, 2000, 4000, and
8000 Hz, respectively for average speech. These weights
can (and should) be changed for different speech materials
depending on the goal of the researcher (see Discussion
for more consideration of this point).

Together, these functions capture two important
aspects of speech understanding: audibility and impor-
tance. In order to integrate A and I into the SCIi, the SCIi
is calculated by following many of the steps in calculating
Figure 2. Example modulation index matrix, Speech Intelligibility Index
matrix.
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the SII. All of the steps of the SII are performed as laid
out in the ANSI standard (ANSI, 1997) except for the
summation in equation 14 from the standard. Rather, the
product of A and I is used to weight the rows of the
MIM. This weighting procedure is applied only to the
comparison stimulus MIM. The MIMs are then vectorized
and correlated. The following equation expresses these
operations mathematically:

SCIi ¼ corr vec MIMc⊙ið Þ; vec MIMbð Þð Þ (3)

where i is the product of the band audibility function (A)
and band importance functions (I) from the SII standard
(ANSI, 1997). Although the particular choice of the SII
weights is somewhat arbitrary here (indeed, the weights
are very similar to those of the Speech Transmission
Index), the point of this step is to improve the predictabil-
ity of the SCI by using information about hearing sensitiv-
ity for individual listeners. See Figure 2 for an example
MIM, weighting function, and resulting weighted MIM.

The correlation can be defined more formally as follows:

SCIi ¼
P

c′� �c′
� �

b� �b
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
c′� �c′
� �2P

b� �b
� �2q (4)

Where c′ is the weighted comparison matrix, b is the
unweighted comparison matrix, and the overbars represent
the mean of the matrix. Equation 2 is a simple Pearson
correlation.
Analysis and Results

Acoustic analysis using the SCIo and the SCIi was
performed on the stimuli described above. The baseline
stimulus was linearly amplified and uncompressed in time.
Figure 3 shows the resulting distributions of SCIo and
SCIi values (collapsed across all TC and WDRC condi-
tions; for more details, see Souza et al., 2021) using violin
plots. Violin plots visually summarize data by plotting
(SII) weighting vector, and resultant weighted modulation index

Ellis & Souza: Updating the Spectral Correlation Index 2723
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Figure 3. Violin plots showing the distribution of Spectral Correlation Index (SCI) values for each of the SCI types. The original Spectral Cor-
relation Index is plotted in blue (top) and the new “individual” version in gray (bottom). Black points represent medians of distributions. Black
lines span the 25th and 75th percentile. The height of the “violin” represents the number of cases for a given SCI value and can be inter-
preted like a density plot or smoothed histogram. Both distributions tend to be negatively skewed; however, the individual SCI is less
skewed than the original SCI.
frequency of occurrence (density) along the y-axis and the
parameter of interest along the x-axis. Here, the distribu-
tions use the default kernel for calculating density in the
ggplot package (Wickham, 2016) in R (R Development
Core Team, 2021). Note that the distributions for the
SCIo and the SCIi are qualitatively different from one
another. The SCIo is negatively skewed (skewness = −0.95),
whereas the SCIi is less negatively skewed (skewness =
−0.61). The distribution of SCIi values is more desirable for
statistical modeling because it is closer to a normal distribu-
tion than the SCIo.

All analyses were done in R (R Development Core
Team, 2021) using the tidyverse package (Wickham et al.,
2019) for data handling and visualization. A binomial gener-
alized linear model (GLM) was used to assess whether either
the individual SCIi showed any marked improvement over
the SCIo. The dependent variable of the binomial GLM was
percent correct on the speech intelligibility task. Indepen-
dent variables were SCI type (a factor with two levels)
and SCI value (a continuous variable, centered before
analysis). A significant interaction between SCI type and
SCI value would indicate a difference between the predic-
tors, so the interaction term was included in the model.

Overall, the model fit significantly better than
chance, χ2(3) = 468.2, p < .001. There was a significant
interaction between SCI type and SCI value, χ2(1) =
20.09, p < .001, as well as significant main effects of
SCI type, χ2(1) = 36.80, p < .001, and SCI value,
χ2(1) =411.32, p < 0.001. The slopes between the individ-
ual SCI and the original SCI were significantly different
(Δβ = 2.165, z = 4.467, p < .001). See Figure 4 for a visu-
alization of the fits.
2724 Journal of Speech, Language, and Hearing Research • Vol. 65 •
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While it is clear that the individual SCI leads to a
different prediction, this does not necessarily tell us any-
thing about the goodness-of-fit. To assess goodness-of-fit
for both types of SCI, two separate binomial GLMs were
fit to the intelligibility data for each SCI. Then, the
Akaike information criterion (AIC) and deviation values
of each model were compared. The AICs of the SCIo and
individual SCIi models are 2449.03 and 2255.41, respec-
tively. The AIC values on their own indicate that the indi-
vidual SCI model is the best fit, though it can be difficult
to interpret the magnitude of differences in AIC. To aid
interpretation, the AIC values were transformed to AIC
weights (Wagenmakers & Farrell, 2004). Briefly, AIC
weights allow a direct comparison of how likely one
model is relative to the next given the data examined (i.e.,
model A is twice as likely as model B, etc.). The AIC
weights indicate that the model using the SCIi is 43 orders
of magnitude (7.33 × 1043) times more likely than the
SCIo. This suggests that the SCIi is a significantly better
model than the SCIo.
Discussion

This research note presents an update to a method
used to calculate the SCIo Gallun & Souza, 2008) by using
the band importance weights and the individualized band
audibility function from the SII (ANSI, 1997). This
updated distortion measure is referred to as the SCIi. The
SCIi requires audiometric thresholds and applied gain
information, but produces significantly stronger
2720–2726 • July 2022
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Figure 4. Lines of best fit and 95% confidence intervals based on the different Spectral Correlation Index (SCI) measurements. Shaded
regions represent the 95% confidence intervals. Points represent sentence scores. The original Spectral Correlation Index values are plotted
in blue, whereas the Spectral Correlation Index, “individual” version (SCIi) values are plotted in gray. Points are jittered along the y-axis to
aid in visualization. It is clear that the SCIi is more sensitive to changes in performance as a function of SCI value.
predictions (tens of orders of magnitude better) than the
SCIo by accounting for individual differences.

There are numerous benefits of the SCI over other dis-
tortion metrics regardless of the specific version of the met-
ric. First, the SCI is capable of quantifying distortion
between two signals that are not of equal length. This is an
important advantage offered by the SCI. Although metrics
like the Envelope Distortion Index (EDI) and Hearing Aid
Speech Perception Index/Hearing Aid Speech Quality Index
provide good predictions of behavioral data, when the sig-
nals of interest are not of equal length (i.e., TC), they cannot
be used. The SCI solves this problem by examining signals
in the AM frequency and carrier frequency domain, circum-
venting the need to have equal-length signals. This also pro-
vides a more nuanced approach to characterizing the AM
properties of a signal than the EDI. The flexibility and
nuance of the SCI are valuable properties of this metric.

This research note presents a reanalysis of previously
published data (Souza et al., 2021) in which TC and
WDRC parameters were systematically varied. In the pres-
ent analysis, these data were handled fairly coarsely by col-
lapsing across experimental condition (TC and WDRC
parameters). Regardless of this coarse handling of the data,
the SCIi was still a strong predictor of performance. The
strong predictive power of the SCIi in even a coarse han-
dling of data demonstrates that it is able to capture acous-
tic modifications produced by different experimental manip-
ulations. For a by-condition analysis, see Souza et al. (2021).

There are several explanations for the improved pre-
dictive value of the SCIi over the original SCI. In the SCIo,
all carrier bands were assumed to contribute equally to per-
ception, which we know is not the case based on both the
Downloaded from: https://pubs.asha.org Northwestern University on 09/04/2
SII (ANSI, 1997) and the Speech Transmission Index (STI)
(Steeneken & Houtgast, 1980). Weighting by band impor-
tance adjusts the metric to be consistent with principles of
speech intelligibility. Also, in the SCIo, contributions of mod-
ulation were included even if the carrier band of the modula-
tions was below the listener’s threshold. By not accounting
for audibility, the SCIo assumes all modulation information
is fully available to the listener. This is not the case if a given
carrier band is inaudible. The SCIi addresses this by account-
ing for audibility and de-weighting modulations in carrier
bands that are less audible to the listener according to the
band importance function of the SII. While the weights used
here do not represent the only possible modification, they
are a principled approach to incorporating signal audibility
and modulation in a straightforward metric.

In the future, it may be feasible to further customize
the metric by considering the listener’s modulation sensitiv-
ity, as well as sensitivity to sound level. Refinements could
be made to the measure by narrowing the bandwidth of the
carrier or modulation frequency filterbanks. Finally, while
several options for suitable weights (e.g., SII, STI) are
available, they are derived from average speech levels over
time. Weighting functions that account for speech audibility
in a more nuanced way than using the long-term average
spectrum (e.g., Rhebergen & Versfeld, 2005; Shen et al.,
2020) could also be informative.
Conclusions

The individual SCI (SCIi) is an improvement over
the original SCI (SCIo) for calculating distortions caused
Ellis & Souza: Updating the Spectral Correlation Index 2725
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by hearing aid processing like WDRC. The SCIi utilizes
individual gain and hearing loss information to achieve
this improvement.
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