Relationship between beamformer patterns, compression, and working memory for different noise configurations.

^aCommunication Sciences & Disorders, Northwestern University; ^bDept. of Communication Disorders, Univers, Univers

Background & Significance

Previous research has shown that speech recognition with wide dynamic range compression (WDRC) is associated with individual working memory (WM) ability, especially in adverse listening conditions¹. Our recent work² has found that combining stronger directional processing (beamformers) with WDRC in hearing aids may reduce the role of WM for speech recognition in ideal spatial conditions when the target signal is presented at 0° and the noise is at 180°. However, under realistic spatial conditions, the noise may arrive from multiple locations, rendering the beamformer less effective if the interfering noise is more diffuse and falls outside the directional null³. We need to understand the impact of directional processing on the relationship between WM and speech recognition in realistic spatial conditions.

Objectives: In this project, we extend our work to include different beamformer patterns and multiple noise locations. This work also evaluates the feasibility and conditions under which the current implementation of an open-source device⁴ may be applicable to study these relationships.

Methods

Participants

5 individuals (3 males) with hearing impairment in the age range 66-73 years participated in the experiment to date.

Fig. 1. Individual air conduction thresholds (dashed colored lines; red=right, blue=left). Average thresholds for each ear are represented by the solid lines.

Hearing aids

Signal processing was presented with two types of bil. BTE-RIC hearing aids, each with a different type of beamformer.

	Device A	Device B
Туре	Commercially available	Open-source speech processing platform (OSP) ⁴
Bands	48	11 ⁵
Beamformer	Binaural, narrow beam; 4 mic inputs; wireless NFMI for communication b/w ears	Bi-directional; 2 mic LR adaptive; generalized sidelobe canceller; linearly constrained minimum variance beamformer ^{6,7}
WDRC Release time	Fast: 70-120 ms Slow: 1400 ms	Fast: 100 ms Slow: 1400 ms
Compression Ratios > 1 kHz	Mean = 2.37 Range = 1.8 to 3.04	Mean = 2.7 Range = 2.22-3.18

Individualized gains and CRs for Device B were obtained from the NAL-NL2¹² standalone software Devices were coupled with power domes. All advanced signal processing features except automatic feedback suppression were turned off.

Varsha Rallapalli^a, Richard Freyman^b, Pamela Souza^{a,c}

Acknowledgements: Work was supported by NIH K01DC018324. Authors thank Dr. Harinath Garudadri for providing the OSP; Dhiman Sengupta, Wayne Phung & KuanLin Chen for assisting with device setup and ongoing discussions about the beamformer; Marina Cox for assisting with data collection and analyses.

Speech: IEEE sentences (50 keywords/condition)⁸; 2 male and 2 female talkers from a local-talker database; presented at 65 dB SPL

Noise: 6 talkers; 3 male and 3 female spontaneous speech recordings from the ALLSTAR database⁹; 10 s lead time

Fig. 2. Configuration of speakers in the test space. Speakers were placed at a distance of 1 m around the listener. Speech was always presented at 0°. Spatial config 1: 3 talkers per speaker, located at +/-90 °; Spatial Config 2: 2 talkers per speaker, located at +/-90° and 180°. Stimuli were always presented at ear level.

Audibility across hearing aid processing conditions was matched to NAL-NL2 targets within +/- 5dB between 0.25-4 kHz in a test box.

5-10 dB gain was added between 0.5-2kHz in the Beam conditions for Device B across fittings to match

> Fig. 4. Signal fidelity (cepstral correlation¹⁰) across conditions for a representative audiogram with mild-mod. sev. HL¹³. Test &

ref. signals recorded on KEMAR (occluded). Key observations: Signal fidelity with Slow WDRC > Fast WDRC, Beam > Omni with both devices. *Effects in quiet are comparable*

between devices; overall improvement in fidelity is greater for the binaural Beam (Device A) vs the bi-directional Beam (Device B) across conditions.

Fig. 5. Percent correct scores at each SNR. Colored bars represent hearing aid processing conditions (legend). Results are grouped by spatial config. Error bars - SE of mean. Note ceiling performance at 8 dB SNR.

Summary & Future Directions

Results to date suggest the following trends:

- WM ability may impact speech recognition benefit with the binaural beamformer (narrow) in the presence of multiple talker-interferers from 2 or 3 spatial locations. • Individuals with higher WM ability may show greater benefit with beamformers
- Regardless of WM ability, speech recognition may not be impacted by WDRC release time, despite lower signal fidelity with fast WDRC than slow WDRC.
- A larger sample size is needed to appropriately interpret the behavioral results.
- Adequate audibility (SII and match-to-targets) is achieved in quiet across signal processing settings with the OSP (Device B)
- Speech recognition in noise does not reveal any systematic differences between devices with omnidirectional processing
- to evaluate the full effects of the beamformer.

References

- Souza et al. (2015). Working memory and intelligibility of hearing-aid processed speech. *Front* Psychol. 6
- Rallapalli et al. (2022). Relationship between working memory, compression, and beamformers in 9.
- ideal conditions. American Auditory Society, Scottsdale, AZ Best et al. (2015). An evaluation of the performance of two binaural beamformers in complex and 10.
- dynamic multitalker environments. *Int. J. Audiol., 54(10)*, 727-735. IEEE Access. 7. 162083-1621
- Sokolova et al. (2022). Real-time Multirate Multiband Amplification for Hearing Aids. *IEEE Access* 6. Lee et al. (2018). Sparsity Promoting Adaptive Beamforming for Hearing Aids. IHCON.
- Liang et al. (2019). Noise management features in open speech platform. ASA.

Results

Working Memory 40% ∵= 30% <u>°</u> 20% 10% Working Memory (RST %)

Fig. 6. Beam-benefit at 3 dB SNR as a function of WM measured using the reading span test¹¹ (RST %). Scores averaged across spatial configurations & WDRC.

Key results to date from statistical analyses (LME model):

- SNR*Mic: Omni < Beam only at 3 dB SNR (p < 0.001)
- *RST*Mic* (*p* < 0.01): See Fig. 6
- No sig. effect of WDRC, WDRC*RST, or spatial config.

Behavioral (Device B: Omni only)

Fig. 7. Percent correct scores with Device B (OSP) in omnidirectional mic condition averaged across three listeners. Device A scores are shown for comparison *(legend). Error bars represent the SE of mean. LME* model showed no significant main effect of device or interactions with other test conditions on % correct scores (p > 0.05).

Relatively smaller improvement in signal fidelity with the bi-directional beamformer in the +/-90°, 180° condition is as expected because the interferer at 180° is within the region of beam sensitivity. However, the small effects of the bi-directional beamformer in the +/-90° condition need further investigation. Different test conditions may need to be considered

Rothauser et al (1969). IEEE recommended practice for speech quality measurements. *IEEE Trans* Acoust, 17, 225–246

Bradlow, A. R. (n.d.) ALLSSTAR: Archive of L1 and L2 Scripted and Spontaneous Transcripts And Recordings. https://oscaar3.ling.northwestern.edu/ALLSSTARcentral/#!/recordings. Kates & Arehart (2014). The hearing-aid speech quality index (HASQI) version 2. J Audio Eng Soc, 62(3), 99-117

4. Pisha et al. (2019). A wearable, extensible, open-source platform for hearing healthcare research. 11. Daneman & Carpenter. (1980). Individual differences in working memory and reading. J Verbal Learning Verbal Behav, 19(4), 450-66

Keidser et al. (2012). NAL-NL2 empirical adjustments. Trends Amplif, 16(4), 211-223. Bisgaard et al. (2010). Standard Audiograms for IEC 60118-15 Measurement Procedure. *Trends Amplif, 14(2),* 113-120.